Augmented Stabilized Formulations with Fictitious Boundary Methods

نویسندگان

  • R. Ranjana
  • Y. Feng
  • A. Chronopoulos
چکیده

Augmentation of the SUPS formulation was introduced earlier and successfully applied to solving incompressible NavierStokes equations for both two dimensional and three dimensional problems. Fictitious boundary methods (FBM) is a new methodology that aid the study of flow descriptions around solid obstacles on fixed Cartesian product grids that do not require body confirming meshes. FBM has been applied to lower order finite element and spectral/hp least squares techniques. We test the augmented stabilized finite element formulation introduced earlier, (ASUPS) to the fictitious boundary context and use it to solve incompressible flow problems. Utilizing the advantages of fictitious boundary methods we present solutions to flow around an array of two dimensional and three dimensional problems. In two dimensional flow computations we solve flow past a circular and elliptical shaped cylinders. For the ellipse shaped obstacles in a Newtonian flow field we examine the effects of varying boundary conditions and aspect ratios on the flow metrics. Finally we extend the procedures to solving two ellipse and two circular shaped obstacles facing the free stream. In three dimensional computations we examine incompressible flow around a three dimensional ellipse shaped obstacle at Reynolds number Re-200.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fictitious Domain Methods Using Cut Elements: Iii. a Stabilized Nitsche Method for Stokes’ Problem

We extend our results on fictitious domain methods for Poisson’s problem to the case of incompressible elasticity, or Stokes’ problem. The mesh is not fitted to the domain boundary. Instead boundary conditions are imposed using a stabilized Nitsche type approach. Control of the non-physical degrees of freedom, i.e., those outside the physical domain, is obtained thanks to a ghost penalty term f...

متن کامل

Semi-Smooth Newton Method for Solving Unilateral Problems in Fictitious Domain Formulations

This contribution deals with the numerical solution of elliptic boundary value problems with unilateral boundary conditions using a fictitious domain method. Any fictitious domain formulation [2] extends the original problem defined in a domain ω to a new (fictitious) domain Ω with a simple geometry (e.g. a box) which contains ω. The main advantage consists in possibility to use a uniform mesh ...

متن کامل

Stabilized and Galerkin Least Squares Formulations

We study incompressible fluid flow problems with stabilized formulations. We introduce an iterative penalty approach to satisfying the divergence free constraint in the Streamline Upwind Petrov Galerkin (SUPG) and Galerkin Least Squares (GLS) formulations, and prove the stability of the formulation. Equal order interpolations for both velocities and pressure variables are utilized for solving p...

متن کامل

Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method

We extend the classical Nitsche type weak boundary conditions to a fictitious domain setting. An additional penalty term, acting on the jumps of the gradients over element faces in the interface zone, is added to ensure that the conditioning of the matrix is independent of how the boundary cuts the mesh. Optimal a priori error estimates in the H1 and L2 norms are proved as well as an upper boun...

متن کامل

On a Fictitious Domain Method for Unilateral Problems

This contribution deals with numerical realization of elliptic boundary value problems with unilateral boundary conditions using a fictitious domain method. Any fictitious domain formulation [2] extends the original problem defined in a domain ω to a new (fictitious) domainΩ with a simple geometry (e.g. a box) which contains ω . The main advantage consists in possibility to use a uniform mesh i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016